

THE INTEGRATED APPROACH TO OUR "LIFE OF FIELD" DEVELOPMENT PHILOSOPHY

July 13, 2021 – DUG PERMIAN CONFERENCE

CALLON PETROLEUM – ASSET AND COMPANY OVERVIEW

COMPLIMENTARY ASSET PORTFOLIO

- Multi-basin exposure allows for diversification, mitigating basin specific operational and pricing risk
- Meaningful scale in each area enhances the ability to generate and retain operational / capital efficiency
- Rotational development allows for data capture which enhances the integrated workflow and continuous evaluation process

KEY STATISTICS	
Total Net Acres	~180,000
1Q21 Total Production (Mboe/d)	81.0
1Q21 Oil Production (MBbl/d)	52.0
Market Cap ¹ (\$BN)	\$2.5
Enterprise Value ¹ (\$BN)	\$5.4

LIFE OF FIELD DEVELOPMENT PHILOSOPHY

CRITICAL CONCEPTS

- Multi-interval development reduces likelihood of "uneconomic" child wells and future inventory loss
- Development Intervals are evaluated on an individual and project level basis to design custom drilling and completion programs that optimize recoveries and economic returns
- Longer-term development plans are continuously refined as new data enters the evaluation cycle

A MULTIDISCIPLINARY APPROACH TO ASSET DEVELOPMENT

RESERVOIR DEVELOPMENT OPTIMIZATION

- Fundamental understanding of stratigraphy, geomechanical and reservoir properties
- Integration of production and reservoir data into a geologic model to enable reservoir performance modelling
- Geo-mechanical properties, reservoir performance data to enable frac modelling, lateral placement and spacing optimization

PAD DEVELOPMENT AND PROGRAM OPTIMIZATION

- Flexible development program that can respond to changing market conditions
- Assets ranked by production and reserve potential, economic parameters, and pricing sensitivity.
- Inventoried and classified to serve changing needs

Calls for a holistic and multidisciplinary approach.

INTEGRATED MULTI-DISCIPLINE WORKFLOW

GEO-CELLULAR MODELING

HOLISTIC AND UNIFIED MODELS

- Mapping geospatial distribution of reservoir facies, porosity systems and fracture networks
- Permian Models built across 1,250,000 acres
 - -650 million cells
 - 10 stratigraphic horizons
 - -600 individual wells with formation evaluations
 - 18,000 wells for structural model

COMPLETION DESIGN AND OPTIMIZATION

FRAC MODELLING OUTPUT EXAMPLE

- Designed based on resource, stratigraphy, and stress profiles
- Optimized for maximum reservoir contact and stimulation while minimizing impacts on offset wells and future inventory
- Execution planned to optimize placement and realize operational efficiency while minimizing ESG impact

FIELD DEVELOPMENT PLAN OPTIMIZATION

Critical Input and Evaluation Steps:

- Parent-child production forecast and depletion analysis with optimized completion design
- Well landing / configuration optimization
- Well spacing optimization
- Well timing optimization

Additional Considerations:

- Portfolio development obligations (CDC/HBP)
- Known offset operations (potential frac impacts)
- Infrastructure / facility constraints

OVERALL PROGRAM OPTIMIZATION

MAXIMIZING RECOVERY WHILE PRESERVING ECONOMIC INVENTORY

OPTIMIZED PROGRAM DEVELOPMENT

Intra-well Communication Management

 Plan development to optimize production between zones that communicate improving overall project economics

 Customize spacing where needed to account for prior development and to reduce offset frac impacts

Depletion Tracking and Impact

 Reduce time between development vintages to minimize effects of pressure depletion and voidage

SIGNIFICANT ADVANTAGES ACHIEVED

Lower well costs

 Maximizing crew efficiency, leveraging infrastructure, and bundling costs reduces overall capex

Shorter cycle times

 Project compression allows for faster cash recovery and better crew utilization

Less offset completion impact

Improved ratio of new wells to impacted production
 PLUS lower downtime for shut-ins and faster returns to production

+ Parents, - children

 Improved development timing through project scale and field efficiency lowers the number of potential child wells, boosting average future well productivity

MULTI-YEAR INVENTORY DEVELOPMENT OUTLOOK

PRIMARY ZONE INVENTORY OVERVIEW

>1,700 Gross Locations • Delaware Basin • Midland Basin • Eagle Ford

DEVELOPMENT STRATEGY

- "Primary zone" inventory limited to delineated zones in active development
- Over 1,100 risked locations with breakeven economics at \$40/Bbl or lower
 - All type curve economics risked for development interference learnings from scaled project deployment
 - Engineered spacing on a pad-by-pad basis

Delaware Basin

- Primary zones: 2BS / 3BS / WCA / WCB / WCC
- Average lateral: ~8,700'Average W.I.: ~83%
- Up to six wells per zone, with tailored spacing for offset wells
- Other potential zones: Canyon Sands / Avalon

Midland Basin

- Primary zones: MS / LS / WCA / WCB
- Average lateral: ~7,000'Average W.I.: ~87%
- Six to eight wells per zone, with custom spacing for offset wells
- Other potential zones: Clearfork / Jo Mill / Penn Shale / Atoka

Eagle Ford

- Primary zone: Lower Eagle Ford
- Average lateral: ~7,200' Average W.I.: ~90%
- Average lateral spacing of ~525'
- Other potential zones: Austin Chalk
- Enhanced oil recovery being evaluated

INVENTORY BY AREA

SUMMARY

- Repeatable and reliable asset development requires accurate and robust data management alongside a highly iterative, multi-disciplinary evaluation and planning process
- A deeper understanding of the geology and reservoir properties is required to fully determine the resource potential and optimize development
- Various sensitivity analyses on completion design, frac-hit prevention strategies and well spacing optimization can be performed once a detailed geological model is available, leading to optimized development and well performance
- Reservoir modeling helps to quantify pressure depletion risk and improve completion optimization as the complexity and size of projects increase over time
- Continuous re-evaluation of project level results and the addition of data to the geo-cellular and reservoir models is critical to further optimize future well & project performance, further enhancing visibility for longrange development plans and overall project economics

